Skip to content

Experiment

evaluate #

evaluate(
    algorithm: Any, /, **kwargs
) -> tuple[str, float | None, dict]

Evaluates the algorithm.

Returns the name of the 'error' metric for this run, its value, and a dict of metrics.

instantiate_values #

instantiate_values(
    config_dict: DictConfig | None,
) -> list[Any] | None

Returns the list of objects at the values in this dict of configs.

This is used for the config of the trainer/logger and trainer/callbacks fields, where we can combine multiple config groups by adding entries in a dict.

For example, using trainer/logger=wandb and trainer/logger=tensorboard would result in a dict with wandb and tensorboard as keys, and the corresponding config groups as values.

This would then return a list with the instantiated WandbLogger and TensorBoardLogger objects.

evaluate_lightningmodule #

evaluate_lightningmodule(
    algorithm: LightningModule,
    /,
    *,
    trainer: Trainer,
    datamodule: LightningDataModule | None = None,
    config: Config,
    train_results: Any = None,
) -> tuple[MetricName, float | None, dict]

Evaluates the algorithm and returns the metrics.

By default, if validation is to be performed, returns the validation error. Returns the training error when trainer.overfit_batches != 0 (e.g. when debugging or testing). Otherwise, if trainer.limit_val_batches == 0, returns the test error.

instantiate_datamodule #

instantiate_datamodule(
    datamodule_config: (
        Builds[type[LightningDataModule]]
        | LightningDataModule
        | None
    ),
) -> LightningDataModule | None

Instantiate the datamodule from the configuration dict.

Any interpolations in the config will have already been resolved by the time we get here.