Mnist
MNISTDataModule #
Bases: ImageClassificationDataModule
.. figure:: https://miro.medium.com/max/744/1*AO2rIhzRYzFVQlFLx9DM9A.png :width: 400 :alt: MNIST
Specs
- 10 classes (1 per digit)
- Each image is (1 x 28 x 28)
Standard MNIST, train, val, test splits and transforms
Transforms::
mnist_transforms = transform_lib.Compose([
transform_lib.ToTensor()
])
Example::
from pl_bolts.datamodules import MNISTDataModule
dm = MNISTDataModule('.')
model = LitModel()
Trainer().fit(model, datamodule=dm)
__init__ #
__init__(
data_dir: str | None = None,
val_split: int | float = 0.2,
num_workers: int | None = 0,
normalize: bool = False,
batch_size: int = 32,
seed: int = 42,
shuffle: bool = True,
pin_memory: bool = True,
drop_last: bool = False,
*args: Any,
**kwargs: Any
) -> None
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_dir
|
str | None
|
Where to save/load the data |
None
|
val_split
|
int | float
|
Percent (float) or number (int) of samples to use for the validation split |
0.2
|
num_workers
|
int | None
|
How many workers to use for loading data |
0
|
normalize
|
bool
|
If true applies image normalize |
False
|
batch_size
|
int
|
How many samples per batch to load |
32
|
seed
|
int
|
Random seed to be used for train/val/test splits |
42
|
shuffle
|
bool
|
If true shuffles the train data every epoch |
True
|
pin_memory
|
bool
|
If true, the data loader will copy Tensors into CUDA pinned memory before returning them |
True
|
drop_last
|
bool
|
If true drops the last incomplete batch |
False
|