Imagenet32 ImageNet32Dataset # Bases: VisionDataset Downsampled ImageNet 32x32 Dataset. __getitem__ # __getitem__(index) Parameters: Name Type Description Default index int Index required Returns: tuple: (image, target) where target is index of the target class. ImageNet32DataModule # Bases: VisionDataModule TODO: Add a val_split argument, that supports a value of 0. prepare_data # prepare_data() -> None Saves files to data_dir. default_transforms # default_transforms() -> Callable Default transform for the dataset. train_dataloader # train_dataloader() -> DataLoader The train dataloader. val_dataloader # val_dataloader() -> DataLoader The val dataloader. test_dataloader # test_dataloader() -> DataLoader The test dataloader. get_train_val_indices # get_train_val_indices( dataset_labels: Sequence[int] | ndarray, nb_imgs_in_val: int, split_seed: int, ) -> tuple[list[int], list[int]] Keeps the first nb_imgs_in_val images of each class in the validation set.